Matrix sampling f stretches
Let $A \in \mathbb{R}^{m \times n}$
$B \in \mathbb{R}^{n \times p}$. We want to approximate $A B$. Waive approach $O(m n p)$ time.

Let $A(:, k)$ be the $k^{\text {th }}$ column of A $B(k,:)$ be the kith row of B.
Then $A B=\sum_{k=1}^{n} A(i, k) B(k,:) \quad$ (outer product)

Lat's try to sample $A B$ by taking components with prob. Pk. i.e, Lent $z=k$ w.p. p_{k} for $k \in[n]$, a random variable

Define $X=\frac{1}{p_{z}} A(:, z) B(z,:)$, a matrix $r_{1} v$..
Then the entry-wise expectation

$$
\mathbb{E} X=\sum_{k=1}^{n} \mathbb{P}(z=k) \frac{1}{P_{x}} A(:, k) B(k,:)=\sum_{k=1}^{n} A(;, k) B(k,:)=A B
$$

(this cancellation is the reason we scale by $\frac{1}{p_{k}}$)
Define $\operatorname{Var}(X)=\mathbb{E}\left(\|A B-X\|_{F}^{2}\right)$, the entry-wise variance.
Then $\operatorname{Var}(X)=\sum_{i=1}^{m} \sum_{j=1}^{R} \operatorname{Var}\left(x_{i j}\right)=\sum_{i j} \mathbb{E}\left(x_{i j}^{2}\right)-\mathbb{E}\left(x_{i j}\right)^{2}=\left(\sum_{i j} \sum_{k=1}^{n} p_{k} \cdot \frac{1}{p_{\pi}^{2}} a_{i k}^{2} b_{k j}^{2}\right)-\underbrace{}_{\text {doesn't } \quad\|A B\|_{k}{ }^{2} \text { fir }}$.
We wast to minimize variance, by choosing appropriate P_{k}. for minimizing p_{k}.

$$
\sum_{i j} \sum_{k} p_{k} \cdot \frac{1}{p_{k}^{2}} a_{i k}^{2} b_{k j}^{2}=\sum_{k} \frac{1}{p_{k}}\left(\sum_{i} a_{i k}^{2}\right)\left(\sum_{j} b_{k j}^{2}\right)=\sum_{k} \frac{1}{p_{k}}|A(\vdots, k)|^{2}|B(k,:)|^{2}
$$

Note that for any $c_{k} \geq 0, \sum_{k} \frac{c_{k}}{p_{k}}$ is minimized by $p_{k} \sim \sqrt{c_{k}}$.
Cproof by taking derivatives $p_{1}+\cdots+p_{n}=1$

$$
\frac{\partial f}{\partial \rho_{1}}=\frac{\partial}{\partial_{p_{1}}}\left(\frac{c_{1}}{\left(1-\left(p_{R_{1}}+\cdots p_{n}\right)\right)^{2}}+\frac{c_{k}}{p_{k}}\right)
$$

$$
\begin{aligned}
& \frac{\partial f}{\partial p_{k}}=\frac{\partial}{\partial p_{k}}\left(\frac{c_{1}}{\left(1-\left(p_{2}+\cdots+p_{n}\right)\right)^{2}}+\frac{c_{k}}{p_{k}}\right) \\
&=\frac{c_{1}}{\left(1-\left(p_{2}+\cdots+p_{n}\right)\right)^{2}}-\frac{c_{n}}{p_{k}^{2}}=0 \\
& \frac{p_{k}}{1-\left(p_{2}+\cdots+p_{n}\right)}=\sqrt{\frac{c_{k}}{c_{1}}} \\
& \quad p_{k}=\sqrt{c_{k}} \cdot \frac{1-\left(p_{2}+\cdots+p_{n}\right)}{\sqrt{c_{1}}} \quad \forall k \neq 1 .
\end{aligned}
$$

Thus, we want to pick $p_{k} \sim|A(i, k)||B(k, i)|$.
Note, when $B=A^{\top}, \quad P_{k} \sim|A(:, k)|^{2}$, the squared length of the columns. Even if $B \neq A^{\top}$, we can still use that as an easy to analyze upper bound.
Use $p_{k}=\frac{|A(:, k)|^{2}}{\|A\|_{k}^{2}}$,

$$
\Rightarrow \mathbb{E}\left(\|A B-x\|_{F}^{2}\right)=\operatorname{Var}(x) \leq\|A\|_{F}^{2} \sum_{k}^{\curvearrowleft}|B(k,=)|^{2}=\|A\|_{F}^{2}\|B\|_{F}^{2} .
$$

Repeat with s independents trials, getting X_{1}, \ldots, X_{s}.
Then $\operatorname{Var}(\bar{X})=\frac{1}{s} \sum_{i=1}^{S} X_{i}=\frac{1}{s} \operatorname{Var}(X) \leq \frac{1}{s}\|A\|_{F}^{2}\|B\|_{F}^{2}$.

$$
\left[\begin{array}{c}
A \\
m \times n
\end{array}\right]\left[\begin{array}{c}
B \\
n \times p
\end{array}\right] \approx\left[\begin{array}{c}
\text { Sampled } \\
\text { called } \\
\text { columns } \\
\text { of } \\
A \\
m \times s
\end{array}\right]\left[\begin{array}{c}
\text { Corresponding } \\
\text { scaled } \\
\text { rus of } \\
s \times p
\end{array}\right]
$$

Note $\frac{1}{5} \sum_{i=1}^{s} X_{i}=\frac{1}{s}\left(\frac{A\left(5, k_{1}\right) B\left(k_{1,}=\right)}{P_{k_{1}}}+\cdots+\frac{A\left(\left[, k_{s}\right) B\left(k_{s},:\right)\right.}{P k_{s}}\right)$ $=C R$, where
C hes columns $\frac{A\left(:, k_{i}\right)}{\sqrt{S P_{x_{i}}}}$. Note $\mathbb{E}\left(C C^{\top}\right)=A A^{\top}$
R has rows $\frac{\beta\left(k_{i},\right)}{\sqrt{S P_{r_{i}}}} \quad \mathbb{E}\left(R^{\top} R\right)=B^{\top} B$.
Theorem 6.5 Supper $A \in \mathbb{R}^{\times \times n}$ and $B \in \mathbb{R}^{n \times \rho}$. The pro tact $A B$ can be estimated by $C R$ as given above, and the error is bounded by

$$
\mathbb{E}\left(\|A B-C R\|_{F}^{2}\right) \leq \frac{\|A\|_{F}^{2}\|B\|_{F}^{2}}{S}
$$

Thus, to ensure $\mathbb{E}\left(\|A B-C R\|_{p}^{2}\right) \leq \varepsilon^{2}\|A\|_{F}^{2}\|B\|_{f}^{2}$, it suffices to make $s \geq \frac{1}{\varepsilon^{2}}$. If $\varepsilon=\Omega(1), s=O(1)$, so $C R$ cans be computed in $O(\mathrm{mp})$ time.

When is this a good estimate?
Consider case $\beta=A^{\top}$ for simplicity.
Then if $A=I, \quad\left\|I I^{T}\right\|_{F}^{2}=n$, but $\frac{\|I\|_{F}^{2}\|I\|_{F}^{2}}{S}=\frac{n^{2}}{S}$,
so need $s>_{n}$ for bound to be useful.
Trivial estimate of 0 -matrix gives error $\left\|A A^{\top}\right\|_{F}^{2}$, so need our bound to be at least as good.

Let's analyze using SVD.
When is SUD approximation good? When the top p singular values take up a large constant fraction of the frokenius mass.
Suppose $\exists 0<c<1$ and a small integer p sit. for a matrix A,

$$
\sigma_{1}^{2}+\sigma_{2}^{2}+\cdots+\sigma_{p}^{2} \geqslant c\left(\sigma_{1}^{2}+\cdots+\sigma_{r}^{2}\right) \text {, where } r=\operatorname{rak} k(A) \text {. }
$$

Note $\left\|A A^{T}\right\|_{F}^{2}=\sum_{t=1}^{r} \sigma_{t}^{4}$, and $\|A\|_{F}^{2}=\sum_{t=1}^{r} \sigma_{t}^{2}$.

$$
\left(\sigma_{1}^{2}+\ldots+\sigma_{\gamma}^{2}\right) \leq \frac{\sigma_{1}^{2}+\ldots \sigma_{p}^{2}}{c}
$$

Then $\mathbb{E}\left(\left\|A A^{T}-C R\right\|_{F}^{2}\right) \leq \frac{\|A\|_{F}^{2}\left\|A^{T}\right\|_{F}^{2}}{S}$
In order for the approximation to be good, we want

In order for the approximation to be good, we want

$$
\begin{gathered}
\frac{\|A\|_{F}^{2}\left\|A^{\top}\right\|_{F}^{2}}{S} \leq\left\|A A^{\top}\right\|_{f}^{2} \\
\left(\sigma_{1}^{2}+\cdots+\sigma_{r}^{2}\right)^{2} \leq s\left(\sigma_{1}^{4}+\cdots t_{r}^{4}\right) \\
\Rightarrow \quad s \geq \frac{\left(\sigma_{1}^{2}+\cdots+\sigma_{r}^{2}\right)^{2}}{\left(\sigma_{1}^{4}+\cdots+\sigma_{r}^{4}\right)} \quad m_{1} a x \frac{\left(\sigma_{1}^{2}+\cdots+\sigma_{r}^{2}\right)}{\left(\sigma_{1}^{4}+\cdots+\sigma_{r}^{4}\right)}=r . \quad \text { Tod not a } \quad \text { gond } d .
\end{gathered}
$$

But $\frac{\left(\sigma_{1}^{2}+\cdots+\sigma_{r}^{2}\right)^{2}}{\left(\sigma_{1}^{4}+\cdots+\sigma_{r}^{4}\right)} \leq \frac{\left(\sigma_{1}^{2}+\cdots+\sigma_{p}^{2}\right)}{c^{2}\left(\sigma_{1}^{4}+\cdots+\sigma_{r}^{4}\right)} \leq \frac{\left(\sigma_{1}^{2}+\cdots+\sigma_{p}^{2}\right)}{c^{2}\left(\sigma_{1}^{4}+\cdots+\sigma_{p}^{4}\right)} \leq \frac{p}{c^{2}}$
Thus if $s \geq \frac{p}{c^{2}}$, then the approximation is better than the O matrix
Thus, we don't need to sample that many columns if the mass is contained in a fees singular vectors.
Intuition is that we are sampling according to squared column length, so we will probably pick out columns with laze singular component?

Matrix sketch
Let's motivate with a biological example.
An RNA microarray chip measures expression levels of different snippets of mRWA in a cell, often corresponding to gere expression For a sample, get vector $\vec{x}=\left(x_{1}, \ldots, x_{n}\right)$, where each $x_{i} \in \mathbb{R}^{+}$is the expression of a particular sequence corresponding to an A50 -probe,

Suppose we want to find a low-dimensibual representation that is predictive of a condition. The SVD is a natural way to do this, but the singular vectors might be mixes of the original sample vectors, which is hard to interpret. Also, the SVD takes $O\left(1^{3}\right)$ computation, and destroys sparsity. Another idea is to sketch the matrix by sampling columns.

The 6,9 Let $A \in \mathbb{R}^{m \times n}$ and $r, s \in \mathbb{Z}^{+}$.
Let $C \in \mathbb{R}^{m \times s}$ of s columns of A picked via length squared sampling.

Let $C \in \mathbb{R}^{m \times s}$ of s columns of A picked via length squared sampling.
Let $R \in \mathbb{R}^{r \times n}$ of rows of A
Then we can find from $C \notin R$ an $s \times r$ matrix U sot.

$$
\mathbb{E}\left(\|A-C U R\|_{2}^{2}\right) \leq\|A\|_{F}^{2}\left(\frac{2}{\sqrt{r}}+\frac{2 r}{s}\right)
$$

If we fix s, we minimize error with $r=s^{2 / 3}$. Choose $s=\frac{1}{\varepsilon^{3}}$ and $r=\frac{1}{\varepsilon^{2}}$. Then $\mathbb{F}\left(\|A-C u R\|_{2}^{2}\right)=O(\varepsilon)\|A\|_{F}{ }^{2}$.
Looks like the bound you got for SVD $\left\|A-A_{k}\right\| \leq \frac{\|A\|_{F}^{2}}{\sqrt{k}}, k=\frac{1}{\varepsilon^{2}}$.
So when the first several singular values are large, Sampling works well because columns are near a low-dimensional subspace.

$$
\left[\begin{array}{c}
A \\
n \times m
\end{array}\right]=\left[\begin{array}{c}
\text { sample } \\
\text { columns } \\
n \times s
\end{array}\right]\left[\begin{array}{c}
\text { Multiplier } \\
s \times r \\
\\
C
\end{array} \begin{array}{c}
\text { Sample rows } \\
r \times m
\end{array}\right]
$$

Lemma 6.6 If $R R^{\top}$ is invertible, then $P=\underbrace{R^{T}\left(R R^{T}\right)^{-1}}_{\begin{array}{c}\text { Morce-Perose } \\ \text { Psendo-inverse }\end{array}} R$ $\begin{aligned} & \text { orthogonal } \\ & \text { projecting } \\ & \text { operator }\end{aligned}$$\left\{\begin{array}{l}(i) P_{\vec{x}}=\vec{x} \text { for every vector } \vec{x}=R^{\top} \vec{y} \\ (i i) \text { If } \vec{x} \perp R^{\top} \vec{y} \text { for all } \vec{y} \text {, then } P_{\vec{x}}=0 .\end{array} \quad\right.$ (if x in row space of R)

If $R R^{\top}$ is not invertible, let $\operatorname{rank}\left(R R^{+}\right)=r$ and $R R^{\top}=\sum_{t=1}^{r} \sigma_{t} \vec{u}_{t} \vec{v}_{t}^{\top}$ the $\operatorname{SUD}\left(R R^{T}\right)$.
Then $P=\underbrace{R^{\top}\left(\sum_{t=1}^{r} \frac{1}{\sigma_{1}^{2}} \vec{u}_{t} \vec{v}_{t}^{\top}\right)}_{p^{+} \in \mathbb{R}^{m \times r}} R \underset{\in \mathbb{R}^{r \times m}}{ } \quad$ satisfies those properties.
Prop $6.7 \quad A \approx A P$ and $\mathbb{E}\left(\|A-A P\|_{2}^{2}\right) \leq \frac{1}{\sqrt{r}}\|A\|_{F}^{2}$.
So sample s columns of A to form C, and choose corresponding c. 1.] c rime oof P to form a $\leqslant \times m$ matrix.

So sample s columns of A to form C, and choose corresponding sampled s rows of P to form a $s \times m$ matrix, which we can decompose into s rows of R^{+}, multiplied by R.
We will not take the time to prove this, but the matrix sketch largely follows from sampled matrix multiplication on AP.

